TS Polycet (Polytechnic) 2020 Previous Question Paper with Answers And Model Papers With Complete Analysis

Q) If the angle of elevation of the Sun is 60°, then the ratio of a tree with its shadow.
A) 1 : 1
B) 1 : √3
C) √3 : 1
D) None of these

View Answer
C) √3 : 1
Explanation:
In △ABC,
Tan 60° = AB/AC
√3 = h/x
h/x = √3/1
h : x = √3 : 1

Q) Which of the following formula is associated to cylinder?
A) \frac13\pi r2h
B) π r2h
C) \frac23\pi r3
D) \frac43\pi r3

View Answer
B) π r2h
Explanation: Formula = π r2h

Q) If A, B, C, D are angles of a cyclic quadrilateral, then
sin A + sin B – sin C -sin D =
A) -1
B) 0
C) 1
D) 2

View Answer
B) 0
Explanation: A + C = 180°, B + D = 180°
C = 180°-A, D = 180° – B
sin A + sin B – sin C – sin D
= sin A + sin B – sin (180° – A) – sin (180°-B)
= sin A + sin B -sin A – sin B = 0

Q) cos 201° cos 202° cos 203° ………..cos 300° =
A) \frac\pi2
B) \frac{3\pi}2
C) \frac\pi4
D) 0

View Answer
D) 0
Explanation: cos (180° + 21°) . cos (180° + 22°) cos (180° + 23°)………………..cos (180° + 120°)
= – cos 21° x – cos 22° x – cos 23°………………….. x – cos120°
= -cos 21° x – cos 22° x -cos 23° x – cos 90° x – cos120° = 0

Q) To find out the slant height of a cone, we use ___________theorem.
A) Thales
B) S.A.S.
C) Pythagorus
D) S.S.S.

View Answer
C) Pythagorus
Explanation: Pythagorus

Q) If a cosθ+ b sinθ = p, a sinθ – b cosθ = q, then
A) a2 + b2 = p2 + q2
B) a2 + b2 = p2 – q2
C) a2 – b2 = p2 + q2
D) a2 – b2 = p2 – q2

View Answer
A) a2 + b2 = p2 + q2
Explanation: a cosθ + b sinθ = p
a sinθ – b cosθ = q
(1)2 + (2)2
a2cos2θ + b2sin2θ + 2ab sinθ cosθ = p2
\frac{a2\sin2\theta\;+\;b2\cos2\theta\;-\;2ab\;\sin\theta\;\cos\theta}{a2\;(\cos2\theta\;+\;\sin2\theta)\;+\;b2\;(\sin2\theta\;+\;\cos2\theta)} = p2 + q2
a2 (1) + b2 (1) = p2 + q2
a2 + b2 = p2 + q2

Q) 1 radian =
A) 56°18’
B) 57°16’
C) 56°15’
D) 45°40’

View Answer
B) 57°16’
Explanation: 1radian = 57°16’

Q) The radius of the sphere is increased by 100%, the volume of the resulting sphere is increased by
A) 200%
B) 700%
C) 500%
D) 900%

View Answer
B) 700%
Explanation: 700%

Q) △ABC ~△ XYZ; ∠C= 60°; ∠B = 75°, then ∠Z =_______________.
A) 90°
B) 75°
C) 45°
D) 60°

View Answer
D) 60°
Explanation: △ABC-△XYZ,
∠C = 60°, ∠B = 75°

∠A+∠B+∠C = 180°
∠A + 135° = 180°
∠A = 180° – 135°
∠A = 45°
∠C = ∠Z = 60°

Q) In △ABC; BC2 + AB2 = AC2, then _________ is the right angle
A) B
B) A
C) C
D) Can’t say

View Answer
A) B
Explanation: BC2+AB2 = AC2

∠B = 90°
Spread the love

1 thought on “TS Polycet (Polytechnic) 2020 Previous Question Paper with Answers And Model Papers With Complete Analysis”

Leave a Comment

Solve : *
20 ⁄ 4 =


About Us | Contact Us | Privacy Polocy
error: Content is protected !!